Multidisciplinary Management of An Unusual Isolated Alveolar Bone Infection - A Rare Case Report

RIMPALE SANDEEP K*, DIXIT MALLA B*, KULKARNI RAHUL B*, RAMUGADE MANOJ M*

ABSTRACT
Restoration of proximal defect of tooth is of paramount importance as its improper restoration usually results in fracture of the restoration or deteriorated periodontal health. The article reports a case with a discolored mass of alveolar bone necrosis closed to the overhanged amalgam restoration in the proximal box of the maxillary molar. As a result of this improper proximal restoration it led to deep periodontal pocket and subsequent alveolar bone necrosis which was managed successfully with combined Endodontic-Periodontic treatment. This article highlights the unfortunate sequelae of bone necrosis as a consequence of an incorrect or overlooked dental treatment and its comprehensive management.

Keywords: Amalgam restoration, Endodontic-periodontic lesion, Osteonecrosis, Periodontal regeneration

CASE REPORT
A healthy 23-year-old male patient reported to the Department of Periodontics, with a chief complaint of dull, continuous pain and discomfort in the left maxillary posterior tooth since a month which gradually increased. On clinical examination, it was evident that the tooth #26 had Class II silver amalgam restoration. The restoration was overcontoured and overextended in the mesio-occlusal proximal region with a loss of interdental papilla between tooth #25 and tooth #26. When the concerned area was probed with UNC-15 periodontal probe, there was bleeding on probing evident with presence of 11 mm periodontal pocket [Table/Fig-1]. The overall hygiene of the patient was good except for the maxillary left posterior region. The patient had no relevant systemic medical history. As per the dental history provided by the patient, the amalgam restoration was placed after root canal treatment, six months ago when the patient had reported to a private dental clinic for a serious lesion in relation to the tooth #28. The patient experienced a dull continuous pain in the mentioned region since then, but the patient didn’t report to the dentist again as the discomfort was tolerable. But recently, when the discomfort increased, he reported to the department.

An Intra oral periapical radiographic assessment of tooth #26 showed following findings:
1. Radiopaque, underfilled root canal obturating material within the canals associated with periapical radiolucency and coronal post endodontic restoration in mesio-occlusal proximal aspect of tooth #26.
2. Mesial overhanging restoration which was directly encroaching on the underlying interdental bone.
3. A small, irregular radiopaque mass surrounded by an ill-defined radiolucency was observed in interradicular region of tooth #25 and tooth #26, suggestive of separated alveolar bone from the underlying resorbed alveolar bone [Table/Fig-2a&b].

Treatment procedure
After thorough clinical and radiological examination along with the past dental history of the patient, it was diagnosed as a case of alveolar bone necrosis subsequent to faulty amalgam restoration. The treatment plan was formulated and explained to the patient.

Treatment plan
Step 1 – To remove the faulty amalgam restoration followed by root canal treatment with the involved tooth #26.
Step 2 – A pericoronal flap surgery was planned to remove necrosed part of bone, eliminate the periodontal pocket and correct the underlying hard and soft tissue defect.

After taking informed consent of the patient, local anaesthesia (2% Lignocaine Hydrochloride with 1:100,000 Adrenaline) was administered and old faulty amalgam restoration was removed with air-water spray coupled with high vacuum suction. Tooth #26 was isolated under rubber dam and proper access cavity preparation was done. The underfilled gutta percha obturation material was removed with N0, 30- H (Hedstrom) files. Thorough cleaning and shaping of the root canals was done using Protaper universal rotary files and canal irrigated with 5.25% sodium hypochlorite. Three located canals were obturated with Protaper Gutta percha and Resin sealer. Post obturation, the silver amalgam restoration was done after 5 days.

After 7 days, a full-thickness pericoronal flap was reflected under local anaesthesia for the involved tooth #26. After reflection of flap, a substantial amount of granulation tissue was seen and within it was embedded the necrosed interdental bone. Post thorough debridement, the isolated bone fragment could be appreciated which was brownish in colour and was completely separated from the underlying healthy bone [Table/Fig-3a]. The acquired bone fragment was sent for histopathological examination. Flap was sutured with Black silk sutures (3-0) [Table/Fig-3b] after copious irrigation with 10% povidone iodine and saline. Pericoronal dressing (Coo pak) was placed. After a week, the patient reported for suture removal. After suture removal, the patient followed up for prosthetic treatment. A porcelain fused to metal crown was placed after tooth preparation. Additionally, the patient was instructed and demonstrated for use of interdental proxima brush to maintain in the area. The patient was recalled on regular intervals for check up.

After one and a half months of recall when examined clinically, it was evident that the probing pocket depth was persistent and it was difficult for the patient to maintain oral hygiene in the area of tooth #26 due to the presence of underlying defect [Table/Fig-4]. The crown placed with tooth #26 was fabricated with smooth and polished margins and was placed supragingivally. Hence, it could not act as a contributory factor to plaque built up. Moreover, the persistent pocket was the result of the underlying bony defect. So, a second surgery was planned not merely to eliminate the periodontal pocket but also to access and treat the bony defect caused as...
a result of bone necrosis. Persistence of periodontal pocket due to underlying bony defect was a predictable outcome since no regenerative procedure was done at the first surgery. Regenerative periodontal procedure was not performed during the first surgery but was planned at second surgery to define the regeneration treatment. Absence of local infection and formation of healthy bone was ensured for the bone graft uptake in the region. A resorbable GTR membrane resists its degradation and stay in the desired time only if it does not get infected in the local site in its early initial stage of regeneration. Considering present condition, a full thickness mucoperiosteal flap [Table/Fig-5a] was planned with placement of Demineralized Freeze Dried Bone Allograft along with a shaped and contoured resorbable regenerative periodontal membrane (Pentocci GTR) to correct the defect [Table/Fig-5b]. The GTR membrane used was a resorbable one to eliminate further surgical trauma to the patient by avoiding surgical step for retrieval. After placement of bone graft, the membrane was secured with resorbable sutures (Vicryl 3-0) using anchor sutures [Table/Fig-5a,b]. The full thickness periodontal flap was secured with black silk (2-0) interrupted sutures and Periodontal dressing (Coe pack) was placed.

For the postoperative phase of both the surgeries, the patient was kept under a short antibiotic course (Ampicillin 500mg + Clavulanic acid 125mg), two times daily for 3 days and an analgesic, anti-inflammatory (Ibuprofen 100mg + Paracetamol 325mg), three times daily for 3 days. During the healing phase, the patient was instructed for good oral hygiene maintenance, which was supplemented with 0.12% chlorhexidine gluconate (10 ml) rinse twice daily. With a good long follow up of almost a year, the patient is totally asymptomatic regarding the treated tooth except for a slight gingival recession [Table/Fig-7a,b]. The 9 months follow up radiograph showed bone formation in the bony defect [Table/Fig-5c].

DISCUSSION

Endodontic-Periodontic lesions are challenging in diagnosis and prognosis. A number of factors contribute to formation of these lesions such as trauma, root resorptions, perforations, dental anamolies and in this case a faulty restoration. The immense advances in dental treatment have led to use of numerous medicaments and materials in various dental specialties. There have been reported cases in the literature exhibiting irreparable damage to soft and hard tissues of the dental apparatus [1-3] when these therapeutic foreign materials are not used within the confines of the dental structures. Among such materials, dental amalgam is well known and widely applicable restoration for the posterior tooth with its reported disadvantages when not placed correctly within the boundaries of the prepared cavity [4-6].

Advance technologies generating newer dental restorative materials are being widely used with excellent results. Perhaps, careful techniques and accurate therapy if not provided with these materials, may lead to unfavourable sequelae [6,7]. The universally used amalgam might cause such a great destruction of bone reminds us to use these materials cautiously and this also recalls the toxicity as regards to other materials which when comes in direct contact with bone could considerably harm it [1].

Differential diagnosis of any lesion stands prime priority because misdiagnosis may guide the treatment plan towards uncertain
outcomes leading to false or unnecessary treatment of the lesion. Such misdiagnosis may curtail the actual prognosis of the vital tissues. Radiological findings of the present case suggest a few lesions which may be confused with: Lateral periodontal cyst (LPC), keratocystic odontogenic tumors (KOT), Lateral periodontal cyst (LPC) is a non-inflammatory cyst on the lateral surface of the root of a vital tooth [8], LPC has its own cardinal features, clinically and radiographically [9-11]. KOTs must be distinguished from similar lesions since these are aggressive and following surgical elimination may recur with high rate. Additionally pseudocyst, gingival cyst, radicular odontogenic tumors and lateral radiolus cyst must also be considered in differential diagnosis of similar lesions like Lateral Periodontal cyst [12].

The present case was close to the diagnosis of Lateral Periodontal cyst radiographically but there was an absence of well-defined cortication around the lesion. The lesion being asymptomatic with inflammatory components and present in the maxilla, adjacent to a non-vital molar ruled out LPC. This case was of a concomitant lesion with isolated endodontic odontogenic lesions. Both periodical and the periodontal lesions were treated separately as they were not directly connected. Endodontic treatment was considered before periodontic treatment to make the tooth asymptomatic and decrease the patient’s discomfort. In this case report, the osteonecrosis was profound and the fragment of bone embedded in the granulation tissue was sent for histopathology and later confirmed as bone necrosis (Table 2, Fig. 3). For the treatment of osteonecrosis, the only remedy left is reflection of periodontal flap and removal of the necrosed part of bone which is an irreversible loss to the dental apparatus [13].

Guided tissue regeneration is a time tested and proven method to correct periodontal bony defects [14]. Regenerative periodontal therapy aims at restoring the tooth’s supporting periodontal tissues. The combination of barrier membranes and grafting materials may result in histological evidence of periodontal regeneration, predominately bone repair [15]. In the present case, the incorrect restoration was the primary etiology for the periodontal injury. Hence, it was decided to plan a periodontal regeneration therapy which was perhaps more promising after eliminating the aetiology. Infection has been considered a major cause of incomplete healing with GTR. Presence of infection at the recipient site may invariable cause a higher degree chance for rejection of graft. The ability of periodontal pathogens to produce cytotoxic products and gingival inflammation probably inhibits the coronal migration of periodontal fibroblasts on the tooth surface [16, 17].

Amalgam restorations are used successfully since a century with its proven clinical longevity. But dental amalgam was identified adversely due to its mercury toxicity [18, 19] and are also known to cause some local adverse effects if not properly contoured proximally especially in the cervical region. In a diseased gingival state due to subgingival amalgam restorations, gingival health can be improved by correcting the overhanging margins (20). Also, general health complaints have known to be resolved after removal of micropaque amalgam restorations (21).

There have been earlier reported cases of localized alveolar bone necrosis due to dental materials (22). However, even histologic studies have confirmed that amalgam has the greater potential as compared to other materials to cause epithelial attachment lesions if placed near the soft tissues in the cervicular margins [23]. Based on treatment plan, Grossman classified endo-perio lesions into 3 types: Type 1 - Requiring endodontic treatment only; Type 2 - Requiring periodontal treatment only and; Type 3 - Requiring combined endo-perio treatment (24). Many studies have shown satisfactory root canal disinfection by using rotary systems (25-27).

The use of laser radiation in disinfection of the root canal has also shown good results in addition to routine ProTaper rotary file system [28].

CONCLUSION

The report emphasizes the importance of restoration of proper contact and contour to establish the healthy state of teeth and surrounding periodontal complex. Treatment and prognosis of Endodontic-Periodontic lesions differ, while accurate diagnosis of each specific condition and locating its aetiology is the primary key to resolve such lesions. Recent advances have equipped us with treatment modalities that can be utilised to correct any iatrogenic effects of various dental treatments but preserving the existing dental soft and hard tissues should be the primary objective during dental therapy.

REFERENCES


PARTICULARS OF CONTRIBUTORS:
1. Assistant Professor, Department of Periodontics, Nar Hospital Dental College, Maharastra, India.
2. Professor and Head, Department of Periodontics, Nar Hospital Dental College, Maharastra, India.
3. Associate Professor, Department of Phallendocristos, Nar Hospital Dental College, Maharastra, India.
4. Assistant Professor, Department of Conservative Dentistry and Endodontics, Nar Hospital Dental College, Maharastra, India.

NAME, ADDRESS, E-MAIL ID OF THE CORRESPONDING AUTHOR:
Dr. Primaee Banocoo K.
203, Karle Bavdor, Lot no. 500, Sector no. 5, Banocoo, Nav Mumba-400705, India.
E-mail: banocoo.medicine@gmail.com

FINANCIAL OR OTHER COMPETING INTERESTS: None.